The Most Populous of All Crystal Structure Types-the Tetragonal BaAl_{4} Structure

W. B. PEARSON
Departments of Physics and of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, N2L 3GI

Received April 9, 1984; in revised form August 3, 1984

Abstract

The $\mathrm{BaAl}_{4}\left(\mathrm{ThCr}_{2} \mathrm{Si}_{2}\right) t I 10$ structure, $M N_{2} X_{2}$, is not only the most populous of all known structure types, being adopted by some 400 phases, but is representative of a new group of metallurgically important structures that do not adhere to classifications of Cu -type close packings or tetrahedral close packings. The structure can be described by a square pyramidal framework of N and X atoms which by edge-sharing from slabs in (001) planes, the slabs being interconnected by $X-X$ bonds along [001] (in perhaps 10% of the phases no [001] $X-X$ bonds exist). This framework creates tetragonal hexagonal prismatic voids, that enclose the large M atoms. The average observed $N-X$ and [001] $X-X$ distances are interpreted in a model that shows that the framework, which is responsible for structural stability, accounts for almost all of the valency electrons provided by N and X. The M atoms (diameters 3.1 to $5.1 \AA$) are accommodated in the voids of the framework according to the principles of geometrical packing, apparently without size restriction. In some cases $M-N$ or $M-X$ interactions are shown to control the variable a, c, and z_{X} structural parameters, but they only very modestly influence the $N-X$ distances of the framework. Some comparison with the $\mathrm{Cu}_{2} \mathrm{Sb} t P 6$ structure is made. © 1985 Academic Press, Inc.

1. Introduction

(i) The BaAl ${ }_{4}$ Structure

The $\mathrm{BaAl}_{4} t I 10$ structure type, $M N_{2} X_{2}$ (also variously referred to as the $\mathrm{ThCr}_{2} \mathrm{Si}_{2}$ and $\mathrm{CaAl}_{2} \mathrm{Ga}_{2}$ types), is the most populous of all known structures, there being some 400 phases attributed thereto (1). The structure is described in space group I4/ $m m m$ with $\mathrm{Ba}(M)$ in $2(a) 0,0,0 ; \mathrm{Al}(1)(N)$ in $4(d) 0, \frac{1}{2}, \frac{1}{4}$; and $\mathrm{Al}(2)(X)$ in $4(e) 0,0, z$ with z $=0.380$ (ideally $z=\frac{3}{8}$); $a=4.566, c=$ $11.278 \AA$. The three occupied site-sets lead to many ordered ternary phases with the structure.

The large M atoms are surrounded by a
dicapped tetragonal hexagonal prism of 18 N and X atoms (see Fig. 5 below) and there are four possible equatorial connections to other M atoms which cap the four hexagonal faces. The N atoms are surrounded by a tetrahedron of X atoms which is generally somewhat squashed in the [001] direction, and there also may be connections between N and M. The X atoms of the tetrahedra are always separated by distances greater than D_{X}, the diameter of the X atom. The X atoms are surrounded by a square pyramid of $4 N$ in (001) and one X atom along [001]. In addition there are generally also connections between X and M.

One method of determining convex coordination polyhedra of a structure is by the

Fig. 1. Comparison of the Wirkungsbereiche about the M components for the $\mathrm{YCu}_{2} \mathrm{Si}_{2}, \mathrm{YCo}_{2} \mathrm{~B}_{2}$, and $\mathrm{TlCu}_{2} \mathrm{Se}_{2}$ phases. Indicated on the various faces are the atom that the face separates from the central M atom, and the area of the face. The calculations were carried out by the Potenzeben construction of (3).

Dirichlet (2) construction of bisecting lines joining possible neighbors of an atom by planes normal to the line. The polyhedron enclosed by these planes (now called Wirkungsbereich) defines which atoms are neighbors and which are excluded (no planes in the polyhedron). For reference we show in Figs. 1 and 2 Wirkungsbereich about atoms in several phases with the BaAl_{4} structure. Of particular interest are those surrounding the M atom (corresponding to the tetragonal hexagonal prism, Fig. 5, below), since this is a polyhedron now found in several structures, e.g., ThMn_{12} $t I 26, \mathrm{Ga}_{6} \mathrm{LaNi}_{0.6} t P 16$, and $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$ tI92. It

Fig. 2. Wirkungsbereiche about the N and X components for the $\mathrm{YCu}_{2} \mathrm{Si}_{2}$ phase. That about the M component is shown in Fig. 1. Indicated on the various faces are the atom that the face separates from the central Cu or Si atom and the area of the face. The calculations were carried out by the Potenzeben construction of (3).
is also found in the $\mathrm{Cu}_{2} \mathrm{Sb} t P 6, \mathrm{La}_{2} \mathrm{Sb} t I 12$, and $\mathrm{Ca}_{2} \mathrm{Sb} t I 12$ structures with axial ratio c / a or $c / 2 a$ less than about 1.80 , where it contains two atoms displaced + and - from its center along [001].

Some eight different variants of the structure can be defined depending on whether the most important interatomic distances (4 $M-M, 8-4 M-N, 8-4 M-X, 4 N-N, 4-4$ $N-X$, and $1 X-X$ along [001]) are longer or shorter than the appropriate radius sums, say, for CN12. However, we consider that only two of these lead to significant differences in structure: the major group of phases in which the [001] $X-X$ distances, d_{X-X}, are less than the diameter of the X atom, $D_{x}(X-X$ dumbells), and those in which this distance is anything up to $2 \AA$ or more, greater than D_{X}.

The variety of atoms that have been reported variously to occupy the three sites in the BaAl_{2} structure is remarkable (Table I) and it portends reasons of stability and availability which do not depend per se on group, period, or valency electrons of the components, but rather on geometry.

The BaAl_{4} structure, first determined by Andress and Albertini (4), has recently attracted attention. For example, Parthé et al. (5) have discussed structural aspects, particularly substitutional replacements, $M_{x} N_{y} X_{z}$ and relationships to other struc-

TABLE I

	M Site	N Site	X Site
	Alkali metals	Transition metals	Short-Period elements $\mathrm{B}, \mathrm{Al}, \mathrm{Si}, \mathrm{P}, \mathrm{S}$ B Group elements, $\mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{Se}, \mathrm{Te}$, etc.
	Alkaline earths	Noble metals	
	A and B Group metals, e.g., $\mathrm{Sc}, \mathrm{Y}, \mathrm{Tl}, \mathrm{Sb}, \mathrm{Bi}$, Te	B Group metals, Zn, Cd, etc.	
			Actinides
	Rare earths	A Group metals, $\mathrm{Mg}, \mathrm{Al}, \mathrm{Ga}, \mathrm{In}$	
	Actinides		
		Nitrogen	
	Transition metals 3.12-5.09		
Range of CN12 diameters, \AA	3.12-5.09	1.76-3.33	1.96-3.60

tural types. Such relationships can be derived formally as "splitted" variants from space group subrelations as indicated in Table II that shows tetragonal variants of the structure which also have 10 atoms per cell.

Kiseleva and Savitskii (6) have discussed predictions of phases with the BaAl_{4} structure. Prediction criteria involve atomic and (apparently) phase properties operated on by computer. Contrary stability criteria so

TABLE II
The $t I 10$ and $t P 10$ "Splitted" Derivatives of the BaAl ${ }_{4}$ Structure
(i)

(iv)
$\left.\begin{array}{llll}I 4 / \mathrm{mmm} \longrightarrow & P 4 / \mathrm{nmm} \\ \text { (origin at center } 2 / m \text {) }\end{array}\right)$
obtained lead to the prediction that the phase concerned does not take the $\mathrm{Th}_{\mathrm{Cr}}^{2} \mathrm{Si}_{2}$ structure. Results are shown for the silicon phases of alkaline earths, Y, Zr, Hf, rare earths, and actinides with transition metals, noble metals, and Zn . Most predictions are favorable and many of these are confirmed by observation. Nine unfavorable predictions can be counted, and there are a number of cases where no prediction is made, which we do not understand. Of the nine unfavorable predictions, the authors note three confounded by reports of the phase with the $\mathrm{ThCr}_{2} \mathrm{Si}_{2}$ structure, and to these we add another case. If violation of unfavorable predictions is to be the test of the method, then the present record is 4:9. Pearson and Villars (7) have discussed control of cell dimensions in 10 almost complete series of phases $M N_{2} X_{2}$, with $M=$ rare carth, $N=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$, or Cu , and $X=\mathrm{Si}$ or Ge , as further noted in Section 2(i).

(ii) Sphere Packings and Framework Descriptions of the Structure

The structures of metals and intermetallic phases generally result from satisfaction of sphere packings. The Cu-type close packings and tetrahedral close packings are two examples of sphere packings long recognized in important metallurgical structure types. The BaAl_{4} structure and, e.g., the $\mathrm{Cu}_{2} \mathrm{Sb} t P 6$ and $\mathrm{AsPd}_{5} \mathrm{Tl} t P 7$ types are examples of several structures now recognized as metallurgically important since they are adopted by 100 or more phases. However, such structures do not adhere to the classifications of close-packed or tetrahedrally close-packed structures. They are examples of heterogeneous sphere packings (atoms occupying two or more Wyckoff sites and having different diameters (8)) about which very little is known on a systematic basis since the possibilities are boundless. In contrast all possible cases of homogeneous sphere packings (atoms on
one Wyckoff site only) have been defined by Fischer (9-12) for the cubic and tetragonal classes. The difficulty does not result from recognizing the heterogeneous sphere packings involved in these structures of intermetallic phases, but in demonstrating that the observed structure is more satisfactory for components of given sizes than some other structure, or indeed than the same structure with different axial ratios and values of variables atomic coordinates (see, e.g. (13)—phases with the MoSi_{2} tI6 structure).

TABLE III
Three Possible Framework Descriptions of the BaAl_{4} Structure, the Cell Being Taken in an F Setting
(a) $t(1 / 20) 1 / 41 / 4\left[P_{22}\left[\cdot 4 t_{4 \times 4 \mathrm{e}}\right]+C\right]$
(b) b. . $001 / 4 P_{222}\left[5 \mathrm{py}_{4 \mathrm{e}}\right]+F$
(c) $F\left[\cdot 18\right.$ dethr $\left._{4 \times 6]}\right]$

Explanatory Notes
(a) $t(1 / 20)$ specifies the translation between one slab of tetrahedra and those above and below along [001];
$1 / 41 / 4$ specifies the origin of the lattice complex $P_{22} ; P_{22}$ is the lattice complex which centers the tetrahedra of X atoms $4 t$ indicates the tetrahedra of X atoms and indicates their centering by N atoms; 4e indicates their connectivity by sharing 4 edges C is the symbol for the M atoms
(b) b. . indicates the relationship between the slabs of pyramids (orientation symmetry) $001 / 4$ specifies the origin of the lattice complex P_{222}, about which the square pyramids of N and X are located
5 py indicates the square pyramids of N and X atoms; 4 e indicates their connectivity by sharing 4 edges
F represents the M atoms
(c) F specifies the lattice complex about which the dicapped tetragonal hexagonal prisms are centered
18 dcthr indicates the dicapped tetragonal hexagonal prisms of N and X atoms; - indicates the centering of these polyhedra by M atoms
$4 \times 6 l$ indicates the face sharing of the four hexagons forming the tetragonal prism faces

Framework descriptions of structures are basically an expression of sphere packings (8). Their derivation has its inception in the lattice complexes of the individual atomic sites of the structure. The lattice complex symbols for the atoms on the $2(a), 4(d)$, and $4(e)$ sites of the BaAl_{4} structure are, respectively, F, P_{2}^{\prime}, and $F_{2 z}^{\prime}$ (14), which indicate that it is derived from the cubic Heusler alloy structure, $\mathrm{AlCu}_{2} \mathrm{Mn} c F 16\left(F, P_{2}^{\prime}, F^{\prime}\right)$ in which the Mn atoms are replaced by a dumbbell of $X-X$ atoms along [001]. However, this formal relationship has little significance in relation to the framework descriptions that can be derived for the BaAl_{4} structure. The three obvious framework descriptions are given in Table III and illustrated in Figs. 3 to 5. That based on slabs of

Fig. 3. The tetrahedral framework of X atoms in the BaAl_{4} structure. The tetrahedra are centered by N atoms and form edge-sharing slabs in (001) planes that are interconnected by [001] $X-X$ bonds. M sites are indicated by large black dots and N sites by small black dots.

Fig. 4. The square pyramid framework of N and X atoms in the BaAl_{4} structure. The square pyramids form edge-sharing slabs in (001) planes that are interconnected by [001] $X-X$ bonds. M sites are indicated by black dots.
X tetrahedra in (001) planes, centered by N and interconnected by $X-X$ bonds along [001] ((a) in Table III) has little metallurgical significance since the $X-X$ distances along the edges of the tetrahedra considerably exceed D_{X}. That based on slabs of square pyramids in (001) planes that are formed by one X and four N atoms and interconnected by $X-X$ bonds along [001] ((b) of Table III) is metallurgically important since the N and X atoms are almost invariably in close contact. This framework also creates the tetragonal hexagonal prismatic voids that enclose the M atoms, and which are the basis of the third framework description ((c) of Table III).

The square pyramidal framework of N and X atoms interconnected by [001] $X-X$ bonds constitutes a heterogeneous sphere packing. As discussed in the next section, the distance between the N and X atoms related, say, to the $C N 12$ radius sums, appears to display a remarkable constancy

Fig. 5. The tetragonal hexagonal prism framework of N and X atoms in the BaAl_{4} structure. N and X sites are indicated and M sites are shown by black dots.
when compared to the range of diameters of M atoms contained in its tetragonal hexagonal prismatic voids (Table I). This suggests a particular role of the square pyramidal framework in accounting for the stability of the structure, that transcends the triviality that the N and X atoms comprise four-fifths of the atoms in the structure. Indeed, experience shows that even in slightly complex structures, one cannot assume that the major component(s) will control the structure. For example, in the MgCu_{2} cF24 structure, $M N_{2}$, the cell dimensions may be controlled entirely by the minor (larger) component, M, only by the major component, N, or by both together, depending on the particular elements involved in the structure (15). In the $\mathrm{Th}_{2} \mathrm{Zn}_{17} h R 19$ structure, $M_{2} N_{17}$, where
the larger M atoms comprise less than 11% of the atoms, it is found that in arrays in the basal plane of the hexagonal cell, they strongly influence the a dimension, yet in arrays running along the [001] direction, they have virtually no influence on the c dimension of the cell (16). Such detailed differences in behavior would not be expected on the assumption that the major component(s) alone necessarily control a structure.
When discussing interatomic distances we generally refer to the $C N 12$ diameters of atoms using radii determined from the elements by Teatum et al. (17).

2. Structural Stability and Availability

The z_{X} parameters of some 140 phases with the BaAl_{4} structure have been determined so that interatomic distances involving the X atoms can be calculated. ${ }^{1}$ Such calculations reveal a notable constancy of the differences of the $N-X$ distances, d_{N-X}, and the appropriate radius sums, $R_{N}+R_{X}$. The observed distances for the 140 phases average $0.228 \AA$ shorter than the radius sums taken for $C N 12$. No particular difference in this shortening is noticed for phases in which the [001] $X-X$ distances, d_{X-X}, are less than D_{X}, or are considerably greater than D_{X}. For phases with $d_{X-X}<D_{X}$, the observed [001] $X-X$ distances average $0.218 \AA$ less than D_{X} for $C N 12$, although the individual distances are more variable than the $N-X$ distances.

Although it may be argued that constancy of the $N-X$ distances relative to the radius sums is only to be expected since N and X comprise four-fifths of the atoms in the structure, it is nevertheless an impressive feature as seen on comparing the range

[^0]of $R_{N}+R_{X}$ values with the range of D_{M} values found in the structure-particularly as the four $N-X$ and one [001] $X-X$ neighbor distances comprise the tetragonal hexagonal prismatic voids that house the M atoms. Compare $\mathrm{LiCu}_{2} \mathrm{P}_{2}$ and $\mathrm{BaMg}_{2} \mathrm{Ge}_{2}$, the z values and axial ratios of which, are very similar. For $C N 12, D_{M}$ increases by 1.362 $\AA\left(D_{\mathrm{Li}}=3.124 \AA, D_{\mathrm{Ba}}=4.486 \AA\right)$ whereas $R_{N}+R_{X}$ increases by only $0.413 \AA\left(R_{\mathrm{Cu}}+\right.$ $R_{\mathrm{P}}=2.558 \AA, R_{\mathrm{Mg}}+R_{\mathrm{Ge}}=2.971 \AA$). Nevertheless, the difference between $R_{\mathrm{Cu}}+R_{\mathrm{P}}$ $-d_{\mathrm{Cu}-\mathrm{P}}=0.210 \AA$ and $R_{\mathrm{Mg}}+R_{\mathrm{Ge}}-d_{\mathrm{Mg}-\mathrm{Ge}}$ $=0.173 \AA$ is insignificant. In part, accommodation of the large M atom is achieved by expansion of the [001] $X-X$ distance, since $D_{\mathrm{P}}-d_{\mathrm{P}-\mathrm{P}}=0.421 \AA$ for $\mathrm{LiCu}_{2} \mathrm{P}_{2}$ and $D_{\mathrm{Ge}}-d_{\mathrm{Ge}-\mathrm{Ge}}=0.055 \AA$ for $\mathrm{BaMg}_{2} \mathrm{Ge}_{2}$. Even when a different mechanism of accommodating the large Ba atom is apparent as in $\mathrm{BaMn}_{2} \mathrm{Sb}_{2}$, since c / a is much larger, z is smaller and there are no [001] $\mathrm{Sb}-\mathrm{Sb}$ bonds $\left(D_{\mathrm{Sb}}-d_{\mathrm{Sb}-\mathrm{Sb}}=-0.682 \AA\right), R_{\mathrm{Mn}}+$ $R_{\mathrm{Sb}}-d_{\mathrm{Mn}-\mathrm{Sb}}=0.129 \AA$ has a value not greatly different to those of $\mathrm{LiCu}_{2} \mathrm{P}_{2}$ and $\mathrm{BaMg}_{2} \mathrm{Ge}_{2}$.
(i) Phases in which [001] $X-X$ Bonds Occur

We shall now examine further the role of the square pyramidal framework in phases in which [001] $X-X$ bonds occur.

First we examine the shortening of the $N-X$ and [001] $X-X$ distances compared to the $C N 12$ radii sums in relation to the number of valency electrons provided by the N and X atoms. Here we take the 20 phases (that have [001] $X-X$ bonds and the z_{X} values of which have been determined) which do not contain a transition metal, so that valencys V_{X} and V_{N}, are known with certainty. Since X is bonded to one X and four N if we assume $V_{X} / 5$ electrons are used per X bond and $V_{N} / 5$ electrons per N bond, the calculated shortenings ${ }^{1}$ of the $N-X$ and [001] $X-X$ bonds relative to the CN12 radius sums is $0.228 \AA$, embarrassingly close
to the observed average values of 0.228 and $0.227 \AA$, respectively, for the 20 phases. In this calculation the $N-X$ bonds have the same strength whether the valencies of N and X are both three, or whether N is two and X is four.

There are some 285 phases in which N is a transition metal and 41 of these with [001] $X-X$ bonds and X of valency four have z values determined. For these phases the average shortening of the $N-X$ and [001] $X-$ X distances, compared to the $C N 12$ radii sums is 0.240 and $0.162 \AA$, respectively. Assuming (with Teatum et al. (17)) that the transition metals have six valency electrons in the structures from which their $C N 12$ radii were determined, these shortenings correspond to X using 0.62 electrons in the $X-X$ bond and 3.38 in its $N-X$ bonds, whereas the transition metals contribute 5.0 electrons to the $N-X$ bonds.

These calculations provide one interpretation of the average interatomic distances in a number of phases. They indicate that the N and X atoms contribute most of their valency electrons to the $N-X$ framework (and [001] $X-X$ connections)-there are very few left for $M-N$ and/or $M-X$ interactions even though these distances may be close to or even closer than, the appropriate radius sums.

This observation parallels the results of calculations, for individual phases, of the apparent number of valency electrons that would be required to satisfy the observed interatomic distances and which considerably exceed the number provided by the component atoms. Indeed, this is a situation frequently observed in phases whose structures satisfy geometrical packings of the metallic atoms, rather than directed valency bondings per se (see, for example, Debray (19)). It also recalls the observation in Section 1(i), where it was observed that the variety of components that could occupy each of the three sites in the structure (Table I) portended geometrical packings.

Indeed here we see a hybrid structure where valency bonding controls the $N-X$ framework and [001] $X-X$ connections and geometrical packings involve accommodation of the M atoms.

First, the distinction we make here is not entirely "a straw man." For example, in the $\mathrm{Cu}_{2} \mathrm{Sb} t \mathrm{P} 6$ structure, the low nearneighbor coordination numbers in phases $M X_{2}$ and $M X^{\prime} X^{\prime \prime}$ with axial ratio cla>2.0 suggest a structure dominated by valency bonding. Indeed, the apparent number of valency electrons required to account for the near-neighbor distances equals, within about one electron, the number provided by the component atoms. On the other hand in phases $M^{\prime} M^{\prime \prime} X$ with $c / a<1.80$ and containing a large M atom, where features of geometrical packings are apparent, the apparent number of valency electrons required to account for the near-neighbor distances definitely exceeds those provided by the component atoms.
Second, we examine the results of Pearson and Villars (7) in the context of these observations. They found for 10 series of $\mathrm{Mn}_{2} X_{2}$ phases ($M=$ rare earth, $N=\mathrm{Mn}$, $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$, or $\mathrm{Cu}, X=\mathrm{Si}$ or Ge) as M changed and N and X were held constant that:
First, $R_{M}+R_{N}-d_{M-N}=$ constant for the two series of Mn phases and $R_{M}+R_{X}-$ $d_{M-X}=$ constant for the eight series of Fe , Co, Ni, and Cu phases indicating that the cell dimensions were controlled by $M-N$ contacts in the first case and $M-X$ contacts in the second. Second, $R_{N}+R_{X}-d_{N-X}$ values for all ten series lay in a very narrow band as a function of D_{M}, but the d_{N-X} values increased by about $0.1 \AA$ as D_{M} was increased by $0.28 \AA$. The [001] d_{X-X} also increased with D_{M} but generally at a slower rate than d_{N-X} (in the Cu series d_{X-X} decreased). Thus we note (on the assumption that z_{X} is constant in each series) that there is a modest expansion of the $N-X$ framework as M increases in size.

Finally, it should be noted that Pearson and Villars (20) found generally that in phases where the M component was not a rare earth, the $N-X$ contacts had a greater and the $M-N$ and $M-X$ contacts had a lesser influence on the variation of the cell dimensions in a series of phases as the M component changed and N and X remained the same.

(ii) Phases in which there are no $X-X$

Bonds along [001]

Table IV lists 25 phases for which z values are determined in which the [001] $X-X$ distance definitely exceeds D_{X} for $C N 12$. It is apparent from the table that no uniform conditions govern this phenomenon. For example, the M component may be a very large atom, but it may also be among the smallest M components known (Sb). The condition is found in many phases of bar-

TABLE IV
Phases for Which z Has Been Determined and for Which the Separation of the X Atoms ALONG [001], d_{X-X}, Is GREATER THAN D_{X}, THE Diameter of X For $C N 12$

	$D_{X}-d_{X-X}$		
(\AA)	Phase	$D_{X}-d_{X-X}$	
Phase			
$\mathrm{BaRh}_{2} \mathrm{~B}_{2}$	-2.113	$\mathrm{BaMn}_{2} \mathrm{P}_{2}$	-1.175
$\mathrm{LaCo}_{2} \mathrm{~B}_{2}$	-0.594	$\mathrm{BaFe}_{2} \mathrm{P}_{2}$	-1.283
$\mathrm{YCo}_{2} \mathrm{~B}_{2}$	-0.323	$\mathrm{BaZn}_{2} \mathrm{P}_{2}$	-1.125
$\mathrm{SrAu}_{2} \mathrm{Si}_{2}$	-0.305	$\mathrm{SrFe}_{2} \mathrm{P}_{2}$	-0.874
$\mathrm{CaAu}_{2} \mathrm{Si}_{2}$	-0.128	$\mathrm{SrCo}_{2} \mathrm{P}_{2}$	-0.865
$\left(\mathrm{CeMn}_{2} \mathrm{Si}_{2}\right.$	$-0.067)$	$\mathrm{CaFe}_{2} \mathrm{P}_{2}$	-0.150
$\mathrm{CeNi}_{2} \mathrm{Si}_{2}$	-0.229		
$\mathrm{NdMn}_{2} \mathrm{Si}_{2}$	-0.127	$\mathrm{BaMn}_{2} \mathrm{As}_{2}$	-0.965
$\left(\mathrm{YCr}_{2} \mathrm{Si}_{2}\right.$	$-0.020)$	$\left(\mathrm{SrNi}_{2} \mathrm{As}_{2}\right.$	$-0.054)$
$\left(\mathrm{ThCr}_{2} \mathrm{Si}_{2}\right.$	$-0.028)$	$\mathrm{KFe}_{2} \mathrm{As}_{2}$	-1.309
$\left(\mathrm{BaMn}_{2} \mathrm{Ge}_{2}\right.$	$-0.009)$	$\mathrm{KRh}_{2} \mathrm{As}_{2}$	-1.100
$\mathrm{SrCo}_{2} \mathrm{Ge}_{2}$	-0.159	$\mathrm{BaMn}_{2} \mathrm{Sb}_{2}$	-0.682
$\mathrm{SrNi}_{2} \mathrm{Ge}_{2}$	-0.091		
$\left(\mathrm{EuCu}_{2} \mathrm{Ge}_{2}\right.$	$-0.010)$	$\mathrm{TlCo}_{2} \mathrm{~S}_{2}$	-1.415
		$\mathrm{TlFe}_{2} \mathrm{Se}_{2}$	-1.204
$\mathrm{SbN}_{2} \mathrm{Th}_{2}$	-0.637	$\mathrm{TlCu}_{2} \mathrm{Se}_{2}$	-1.111
$\mathrm{BiN}_{2} \mathrm{Th}_{2}$	-0.654		
$\mathrm{TeN}_{2} \mathrm{Th}_{2}$	-0.466		

ium. For example, in $\mathrm{BaMn}_{2} \mathrm{Sb}_{2}$ with $z=$ 0.3659 , the $\mathrm{Sb}-\mathrm{Sb}$ distance is $0.682 \AA$ greater than D_{Sb} for CN12, but there are also many phases of barium where it does not occur, for example, in $\mathrm{BaMn}_{2} \mathrm{Sn}_{2}$ and $\mathrm{BaAg}_{2} \mathrm{Sn}_{2}$, both with $z=0.376$, where the $\mathrm{Sn}-\mathrm{Sn}$ distances are, respectively, 0.154 and $0.275 \AA$ shorter than $D_{\mathrm{Sn}} \mathrm{IV}$ for $C N 12$.

The phenomenon does not seem to be very prevalent in phases of Si and Ge , and even if the [001] d_{X-X} distance exceeds D_{X}, it does so to a much smaller extent than in phases of $\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{S}$, and Se . Nevertheless, for example, there are also several phases of phosphorus in which $d_{\mathrm{P}-\mathrm{P}}$ is notably smaller than D_{p}.

The breaking of the [001] $X-X$ bonds has little influence on the $N-X$ distances. For the phases listed in Table IV, the average shortening of the $N-X$ distances relative to the radius sums for $C N 12$ is $0.251 \AA$ compared to $0.228 \AA$ for all phases. Indeed, an increased shortening is to be expected since electrons not used in $X-X$ bonds are available for $N-X$ bonds.

(iii) Conclusions

From these observations we see the $N-X$ framework (and [001] $X-X$ connections) established by valency bonding, which uses most of the electrons provided by the N and X atoms, as the feature that provides structural stability. In creating also the tetragonal hexagonal prismatic voids it provides packing for the large M atoms, apparently without any size restrictions, accounting for the wide availability of the structure. Although the large number of adherents of the structure results in part from the multiplicity of the rare earths and the transition metals, it is nevertheless noted that size restrictions are found in structures adopted by rare earths (see, e.g., (21-23) of many possible references) and Group restrictions are found in structures formed by transition metals (see, e.g., $(24,25)$ of many possible references). The BaAl_{4} structure is adopted
by transition metals from the Cr to the Ni Group, apparently without this restriction.
$N-X$ distances relative to the radius sums may remain constant, or vary modestly while accommodating M atoms of various sizes. This accommodation can be achieved by changing the height-to-base ratio of the square pyramids, by rather modest changes of the distances between the X atoms along [001], or by eliminating the [001] $X-X$ bonds-all by suitable adjustment of a, c, and z without greatly altering the average $N-X$ distances of the framework. Such adjustments may be controlled by specific interactions involving the M atoms (e.g., $M-N, M-X)$ as in the phases studied in (7). Close $M-M, M-N$, or $M-X$ distances that may be observed in phases with the structure should be regarded as resulting from "geometrical packings," rather than directed chemical bonding.

Acknowledgments

This work was supported by a special grant from the Natural Sciences and Engineering Research Council of Canada. Grateful acknowledgment is made to Professor E. Hellner and Dr. E. Koch for information about the frameworks involved, and to the former and the Fachbereich Geowissenschaften der Philipps-Universität, Marburg, for hospitality while the work was carried out.

Note added in proof. In the first submission of this paper, the suggestion was made that measurement of electron transport and other physical properties, particularly of single crystals, would indicate whether our model of the framework had any validity. Recently, such a paper has appeared (26). The authors concluded that $\mathrm{TlCu}_{2} \mathrm{Se}_{2}$ has one hole per formula unit at the top of the valency band which has predominantly $\mathrm{Se} 4 p$ character. Expressing this result in terms of our calculations, we calculate a shortening of $0.278 \AA$ for the $\mathrm{Cu}-\mathrm{Se}$ distance relative to $R_{\mathrm{Cu}}+\bar{R}_{\mathrm{Se}}$ for $C N 12$. The observed shortening is $0.265 \AA$.

References

1. W. B. Pearson and P. Villars, Literature search (1984) for Vol. 3 of "A Handbook of Lat-
tice Spacings and Structures of Metals and Alloys.'
2. G. L. Dirichlet and J. Reine, Angew. Math. 40, 216 (1850) (or see Acta Metall. 26, 1662, Appendix A1 (1978) for current description).
3. W. Fischer, E. Koch, and E. Hellner, N. Jb. Min. Mh. 227 (1971).
4. K. R. Andress and E. Albertini, Z. Metallkd. 27, 126 (1935).
5. E. Parthé, B. Chabot, H. F. Braun, and N. Engel, Acta Crystallogr. Sect. B 39, 588 (1983).
6. N. N. Kiselfva and E. M. Savitskit, Inorg. Mater. 19, 440 (1983).
7. W. B. Pearson and P. Villars, J. Less-Common Met. 97, 119 (1984).
8. E. Hellner, E. Koch, and A. Reinhardt, "The Homogeneous Frameworks of the Cubic Crystal Structures," Fachinformationszentrum, Karlsruhe, Nr. 16-2 (1981).
9. W. Fischer, "Existenzbedingungen homogener Kugelpackungen in Raumgruppen tetragonaler Symmetrie," Marburg, Habilitationsschrift (1970).
10. W. Fiscier, Z. Kristallogr. 133, 18 (1971).
11. W. Fischer, Z. Kristallogr. 138, 129 (1973).
12. W. Fischer, Z. Kristallogr. 140, 50 (1974).
13. E. Hellner and W. B. Pearson, Z. Kristallogr. in press.
14. "International Tables for Crystallography," Vol. A, International Union of Crystallography, Reidel, Dordrecht (1983).
15. E. Hellner and W. B. Pearson, Z. Kristallogr. 163, 197 (1983).
16. W. B. Pearson, Acta Crystallogr. Sect. B 35, 1329 (1979).
17. E. Teatum, K. Gschneidner, and J. Waber, Los Alamos Scientific Laboratory Report LA 2345, U.S. Dept. of Commerce, Washington, D.C. (1960).
18. L. Pauling, J. Amer. Chem. Soc. 69, 542 (1947).
19. D. Derray, I. Less-Common Met. 30, 237 (1973).
20. W. B. Pearson and P. Villars, J. Less-Common Met. 97, 133 (1984).
21. J. H. N. Van Vucht and K. H. Buschow, J. Less-Common Met. 10, 98 (1966).
22. S. P. Yatsenko, A. A. Semyannikov, B. G. Semenov, and K. A. Chuntonov, J. Less-Common Met. 64, 185 (1979).
23. J. Bayer, J. Less-Common Met. 87, 45 (1982).
24. E. Hovestreydt, N. Engel, K. Klepp, B. Chabot, and E. Parthe, J. Less-Common Met. 85, 247 (1982).
25. H. Kido, T. Hoshikawa, M. Koizumi, and M. Shimada, J. Less-Common Met. 99, 151 (1984).
26. R. Berger and C. F. van Bruggen, J. LessCommon Met. 99, 113 (1984).

[^0]: ${ }^{1}$ Calculated with Pauling's (18) equation $K(1)$ $R(n)=0.3 \log n$, where n equals valency divided by coordination number. It should be stressed that these calculations refer to the average, not the individual behavior of the phases.

